
Thinking 
Mathematically



Logic and Reasoning
Logic is the study of what is true and false. It analyzes: 

• logical statements, which can be true or false 
e.g. "every dog is an animal"  ,  "every animal is a dog" 

• logical arguments, which can be used to show that a 
statement is true or false 
e.g. "Collie is a dog, so she is an animal" 

In this topic, we will talk about logical statements. 
This will give us the tools we need discuss logical arguments.



Logic is Math
Like other fields of mathematics, logic deals with abstractions.  

It focuses only on certain aspects of statements and arguments,  
which can be described and manipulated in a systematic way. 

The system allows us to reason about problems, and reliably 
reach conclusions by focusing only on the relevant aspects.  
So it can be quite powerful and useful.

A ={         ,             ,            } B =  {          ,           ,          }

abstract concept:  
the number 3



True and False
In the real world, things are not always absolutely true or 
absolutely false. We make many hidden assumptions. 

e.g. "if you win the race, you will get a gold medal" 
assumption: no one will steal the gold medal before the ceremony 

e.g. "the sun will rise tomorrow" 
assumption: the Earth will keep rotating tomorrow 

But in math, we are dealing with idealized concepts, so we can 
be sure that something is true: 

e.g. if a and b are both even numbers, then a + b is an even number



Boolean Algebra
In previous topics, we explored numbers and algebra. 

We had variables that came from a set, such as a, b ∈ N 
and we defined algebraic operations like:  a + b ,   a • b ,   –a 

To study logic, we will now define a set with just two values: 
{ False, True }. Boolean variables can take on one of these values. 
So we can represent logical statements using boolean variables. 

And we will have three algebraic operations on these values: 

a AND b                 a OR b               NOT a



Boolean AND
Just like with addition and multiplication, you can think of AND 
as a function that takes two inputs and gives one output. 

We can construct a table listing all possible inputs to the function 
and its output, called a truth table:

a b a AND b

F F F

F T F

T F F

T T T

Obviously a AND b = True if, and only if, both a = True and b = True.



Boolean OR
Similarly, OR is a function that takes two inputs. 

Here is its truth table:

a b a OR b

F F F

F T T

T F T

T T T

Obviously a OR b = True whenever either a = True or b = True.



Boolean NOT
Like the operation of negating a number, NOT is a function that 
takes one input. So its truth table has only two columns:

a NOT a

F T

T F

Obviously NOT a = True whenever a = False, and vice versa.



Logical Equivalence
We've been using the term "if and only if" in the previous slides.  
It actually means that the expression on the left is true whenever 
the one on the right is true, and false whenever the one on the right 
is false. In other words, the two expressions have the exact same 
value for all values variables a and b. 

It's like saying two functions are equal for all inputs: f(a, b) = g(a, b)

a NOT a NOT ( NOT a )

T F T
F T F

The above table shows that a is logically equivalent to NOT ( NOT a ). 
The mathematical notation for this is a ⟺ NOT (NOT a))



NOT AND
Let's look at the truth table of a AND b again. 
When is a AND b = False?

a b a AND b

F F F

F T F

T F F

T T T

We see a AND b = False if and only if a = False OR b = False.



De Morgan's Law: AND
This allows us to figure out how to negate the statement a AND b 

We see a AND b = False whenever a = False OR b = False. 
So          NOT (a AND b)          ⟺          (NOT a) OR (NOT b) 

To negate the statement a AND b, you have to negate a, negate b, 
and turn the AND into an OR. Here is the truth table to illustrate:

a b a AND b NOT a NOT b (NOT a) OR (NOT b)

F F F T T T

F T F T F T

T F F F T T

T T T F F F



NOT OR
Similarly, take a look at the truth table of a OR b. 
When is a OR b = False?

a b a OR b

F F F

F T T

T F T

T T T

We see a OR b = False if and only if a = False AND b = False.



De Morgan's Law: OR
This allows us to figure out how to negate the statement a OR b 

We see a OR b = False whenever a = False AND b = False. 
So          NOT (a OR b)          ⟺          (NOT a) AND (NOT b) 

To negate the statement a OR b, you have to negate a, negate b, and 
turn the OR into an AND. Here is the truth table to illustrate:

a b a OR b NOT a NOT b (NOT a) AND (NOT b)

F F F T T T

F T T T F F

T F T F T F

T T T F F F



Digital Logic: AND
In computers, instead of the set { False, True } we use the set { 0, 1 }. 

It turns out that logical operations are very similar to operations 
with the natural numbers 0 and 1. AND behaves like multiplication:

a b a • b

0 0 0

0 1 0

1 0 0

1 1 1



Digital Logic: OR
However, there is a difference between OR and addition:

a b a + b

0 0 0

0 1 1

1 0 1

1 1 2

That's why, in many computer programming languages,  
any value other than zero is usually considered true.  
These languages make the OR behave like addition.

The last row has a 2 instead of a 1.



Digital Logic: NOT
In those computer languages, NOT 0 becomes 1, and  
NOT 1 becomes 0, but so does NOT 3, NOT 4, NOT 5.

a NOT a
0 1
1 0
2 0
... ...

Computers today store information in "bits", which are the  
smallest part of computer memory, capable of storing  
either a 0 or 1. CPUs work by having electric current be  
either going through a circuit, or not. That is why sound, 
video and other things are stored "digitally" in computer 
storage, whereas before, on cassette tapes, it was analog.
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Sets and Logic
Let's explore another way of illustrating the truth of statements.  
Consider the set X of all the pixels on your screen. You can form sets 
A, B, etc. out of these pixels. Given one of these sets, a particular pixel 
is either in the set or not. In mathematical notation, for any x ∈ X, 
either x ∈ A or x ∉ A . 

You can think of a set A as all the set of all events where x is true. 
For example A is the set of all events where "I went to the beach."

all eventsA

I went to the beach last week

I went to the beach yesterday



Algebra on Sets: AND
It turns out that operations on sets have the same properties as 
corresponding operations on logical statements! 

Given two sets A and B, we can define their intersection  

A ∩ B = { x : x ∈ A and x ∈ B }



Algebra on Sets: OR
Similarly, given two sets A and B, we can define their union 

A ∪ B = { x : x ∈ A or x ∈ B }



Algebra on Sets: NOT
Finally, given a set A, we can define its complement 

–A = { x : x ∉ A }



Venn Diagrams
We can illustrate Boolean algebra operations visually with sets!  
"And" means intersection. "Or" means union.  
"Not" means complement.



Venn Diagrams
Here are De Morgan's laws illustrated:

= ∪
   NOT (a AND b)       =             (NOT a)            OR            (NOT b)

=
    NOT (a OR b)       =             (NOT a)            AND            (NOT b)

∩



Boolean Algebra
We have already found out some useful rules of this new algebra.  
Just like with algebra on natural numbers, we can now work with 
variables that can stand for any logical statement. 

Let's say we know that "George's cotton shorts are now dry." 

a = "George swam a minute ago" 
b = "George swam in his cotton shorts" 
Since his shorts are now dry, we know that  
           a AND b = False 
NOT (a AND b) = (NOT a) OR (NOT b) = True 
so we can deduce:  
(George didn't swim a min ago) or (he didn't swim in his shorts).



Obvious Rules

Both operations AND and OR are commutative:  
 

a AND b ⟺ b AND a 
a OR b ⟺ b OR a 

 
So you can switch the order of the symbols if you need.



More Useful Rules
Associative laws work like in regular algebra, you can move 

parentheses around as long as you are using the same operation: 

a OR (b OR c) ⟺ (a OR b) OR c 
I ate or (I slept or I swam) ⟺ (I ate or I slept) or I swam 

 
a AND (b AND c) ⟺ (a AND b) AND c 

I have a dog and (I have a cat and an owl) ⟺  
(I have a dog and a cat) and I have an owl



Distributive laws in Boolean algebra work as follows,  
AND distributes over OR, and vice versa: 

a AND (b OR c) ⟺ (a AND b) OR (a AND c) 
I woke up and (ate sushi or ate pizza) ⟺ 

(I woke up and ate sushi) or (I woke up and ate pizza) 

 
a OR (b AND c) ⟺ (a OR b) AND (a OR c) 

More Useful Rules



Identity
Just like with addition and multiplication, we have: 

a  AND  True = a for any statement a 
b   OR   False = b for any statement b 

This can be used to simplify statements. For example: 

(a AND b) OR (a AND NOT b)  
= a AND (b OR NOT b)  

= a AND True 
= a 

"I went  outside and smoked, or I went outside and didn't smoke"  
"Aha, so we just know that you went outside".



Concept: Logic
In this topic, we applied the mathematical techniques that by now will be familiar: 
 
We took a look at things from the real world: in this case, sentences people say, and parts of 
sentences. 
 
Then we started to generalize and build up a system of notation and abstract concepts. 
The concepts in this case were logical statements that could only have two values: 
True and False. So we defined a set which consisted of just these values, and defined three 
operations on it: AND, OR, NOT.
 
We explored the algebra that uses these operations, and found out some of its properties. In 
particular, we found the commutative, associative and distributive laws. Also we learned 
how to properly negate a AND b as well as a OR b using De Morgan's Laws. 

Finally, we discussed parallels to boolean algebra in digital computers as well as with 
set operations. We found that the operations INTERSECTION, UNION, COMPLEMENT are 
exact analogues of the boolean operations above. Thus, set algebra is a boolean algebra, so 
you can use sets to illustrate logical statements. These illustrations are called Venn diagrams. 

In the next topics about deductive reasoning, as well as probability, we will make further use of 
operations on sets, as well as graphs and trees, to show how all these mathematical concepts 
are related.


