
Thinking 
Mathematically



Why think Mathematically?
• Be able to successfully describe problems

• Defining the terms you use, requiring others to do the same.

• Agreeing on what a solution looks like

• Verify whether a statement is really true

• Having confidence that you are right

• Develop effective thinking habits
• Recognizing general patterns

• Being able to apply the right tools for the job

• Breaking down problems into steps.

• Assuming hypotheticals.



A whirlwind history  
of numbers

and how they are useful



Sets
• In the beginning, there was counting. And it was good.

• Set notation A ={         ,             ,            } B =  {          ,           ,          } 

• Be able to communicate a rule which determines set membership. 

• Variables can stand for any member of the set:    Let x ∈ A,   y ∈ B

• The above sets both have three objects. They share that property.

• Sets of Numbers
• N = {0, 1, 2, 3, ... }                              Natural numbers 

• Z = { ..., –2, –1, 0, 1, 2, ... }                 Integers

• Q = { p / q  : p ∈ Z, q ∈ N, q ≠ 0 }             Rational numbers

• R – real numbers,      C – complex numbers



Functions
• Cross Product

• A × B means: the set of all possible tuples { (a, b) : a ∈ A, b ∈ B } 

• A × B × C is the set of all possible triples { (a, b, c) : a ∈ A, b ∈ B, c ∈ C } 

• "Function" is a concept to represent 
operations on variables: 
 
             f ( x, y ) = x + 3y 

• As you vary the input, the output varies
• Let's say x ∈ R,   y ∈ R, and the output is a real number too 

• Then we can write f : R × R → R, and draw the graph of f in 3 dimensions

inputs (aka parameters)

output

x y

z



• Remember, each variable has to come from some set
• "Let a, b be any natural numbers" notation: Let a ∈ N, b ∈ N 

• Addition on Natural Numbers
• It is commutative       a + b = b + a 

• Multiplication on Natural Numbers
• It is commutative       a•b = b•a 

• Distributive law          a•(x + y) = a•x + a•y

Algebra on N

3       +     2

3
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3       +     2

f (a, b) = a + b

g (a, b) = a • b

Addition and  
Multiplication 

are functions of 
two variables



• Raising number to a power n ∈ N 
is repeated multiplication, just like  
multiplication is repeated addition: 

• So we have similar results as with multiplication:

Algebra on N

n times
an = a • a • a • ... • a • a 

• am+n = aman 

• (am)n = (an)m 

• (am)n = a(mn)

m times

...n times

(am)n = (a • a • a • ... • a • a) • 
(a • a • a • ... • a • a) • 

(a • a • a • ... • a • a) 



From Natural Numbers to Integers

• Find a that satisfies a + 5 = 3. 

• N won't work, we need new types of numbers: Z (integers). 

• It turns out we can do algebra with these numbers. 

• Since a + 0 = a for any number a, we call 0 the additive identity 

• The "negative" of a will be denoted –a .  
It is the unique number which makes a + (–a) = 0 

• And we define "subtraction" to be "adding the negative": a – b = a + (–b) 

• Thus we extend algebra to the integers. 

• By the way, |a| means "absolute value of a"



Algebra on Q
From Integers to Rational Numbers

• Find a that satisfies a • 5 = 3. 

• Z won't work, we need new types of numbers: Q (rational numbers). 

• It turns out we can do algebra with these numbers. 

• Since a • 1= a for any number a, we call 1 the multiplicative identity 

• The "reciprocal" of a will be denoted a–1 which is same as 1/a 
It is the unique number which makes a • a–1 = 1 

• And we define "division" to be "multiplying by the reciprocal":  
 
a / b = a • b–1 = a • 1/b 

• Thus we extend algebra to the rational numbers.



Pythagorean theorem 
 
 
 
 

In a right triangle, 
with sides a and b 
and hypotenuse c,

Geometry

a2 + b2 = c2

Proof

~2600 years ago



Irrational Numbers
From Rational Numbers to Real Numbers

• Find a that satisfies a2 = 2. 

• It turns out that no rational number a = p / q can satisfy it. 

• The ancient Greeks knew 2,500 years ago! 

• When we discuss number theory, I will show the proof. 

• The inverse operation of raising to a power is 
raising to a fractional power. 

• Do you remember we had (am)n = a(mn) ? 

• ( √a )2 = a       or put another way       ( a1/n )n = a   

In a future lesson, we will actually explore the set of Real Numbers, R. 
For now, it is enough to know that we can do algebra with them like Q.

a

a

area = 2



From Real to Complex Numbers

• Find a that satisfies a2 = –1 

• R won't work, we need new types of numbers: C (complex numbers). 

• It turns out we can do algebra with these numbers! All the usual rules work with C. 

• Define i =     –1   . On the right, you can see the  
"imaginary axis" of real numbers multiplied by i . 
All the usual rules still work! 

• Addition is ( a + bi ) + ( c + di ) = ( a + c ) + ( b + d ) i 

• Multiplication (a + bi ) ( c + di ) = ( ac – bd ) ( ad + bc ) i 

• 1 is still the multiplicative identity, because a • 1= a for all a ∈ C 

• 0 is still the additive identity, because a + 0 = a for all a ∈ C 

• The commutative and distribute laws still apply.

Algebra on C

0

real part
imaginary part



Graphing Algebra on C
Here is how it looks visually 

• Adding real numbers together is like adding two vectors together. 

• Adding a real number moves the point horizontally.  
Adding an imaginary number moves the point vertically. 

• Multiplying by i rotates 90% counterclockwise  
Multiplying by –i rotates 90% clockwise. 

• Why? Because by convention,  
+i is up and –i is down. 

• You may wonder, what is     i    ?  
It is the number you get by rotating 1 by 45 degrees counterclockwise.

0



Existence
That is an interesting question. The ancient Greeks were very 
disturbed that no matter how much you subdivided a ruler 
into equal parts, you could never have it measure both the 
sides and the hypotenuse of a simple isosceles right triangle. 
 
One can imagine people might have had trouble accepting 
negative numbers exist. 

The imaginary numbers are called imaginary because people 
were already comfortable with the real number line when they 
were invented. So they named the other the "imaginary axis". 

Whether mathematical ideas like gravity fields really exist 
depends on what you mean by "existence". 

What we can say is that they are useful for 
doing mathematical calculations. The models we 
make to understand the world around us can be used 
to predict certain phenomena and explain how they behave.

Do these numbers really exist?



Usefulness
N is used for counting, adding things, etc.  

Z is used for debts, measuring units, etc.  

Q is used for ratios, subdividing measuring units, etc.  

R is used for when you want a smooth number line  

C is when you want to solve any polynomial equation for x



Concept: Generalization
In this topic, we explored the motivations behind why people came to use more and more 
complex types of numbers. This illustrates one of the fundamental ways of thinking 
mathematically: trying to generalize a specific situation. 

Even the counting numbers themselves are generalizations representing the idea that the 
types of objects don't have to matter, if all you care about is the size of the set. You can 
perform the same operations with a set of two apples as you can with a set of two oranges, so 
you can abstract away the type of objects in the set. 

Similarly, variables represent the idea that the particular numbers in a number set don't matter, 
if all you care about is doing some operation with them. You just have to know the rules of 
algebra on that set. 

And as we ran across different algebraic equations and needed to solve for x, we constructed 
larger sets of numbers that included all our previous numbers, and then some. We 
generalized the algebraic operations we already used (addition, multiplication, powers etc.) 
so that they worked on the larger number system in a seamless, compatible way with the 
original number system. 

All these are examples of how mathematicians go about generalizing about things.


