
Thinking 
Mathematically



Sets
• Sets are collections of things, with the following properties: 

• Order doesn't matter: {1, 2, 3} = {1, 3, 2} 

• Repetition doesn't matter: {1, 2, 3} = {1, 2, 2, 3, 3, 3} 

• You can define sets by using variables from other sets: 

• { 2n + 1:     n ∈ N }                                   Positive odd numbers 

• { p / q  :      p ∈ Z, q ∈ N, q ≠ 0 }           All rational numbers 

• Two sets are equal when they have the exact same elements.



Subsets
• We say that A ⊆ B , "A is a subset of B" if p ∈ B whenever p ∈ A 

• {1, 2, 3} is a subset of {1, 2, 3, 4, 5} but not vice versa 

• When A ⊆ B and B ⊆ A then A = B  

• The empty set { } is the set with no elements 

• Given any set A, { } is a subset of it



Numbers
• Recall our sets of numbers: 

• N = {0, 1, 2, 3, ... }                                        Natural numbers 

• Z = { ..., –2, –1, 0, 1, 2, ... }                          Integers 

• Q = { p / q  : p ∈ Z, q ∈ N, q ≠ 0 }             Rational numbers 

• R = Rational + Irrational numbers       Real numbers 

• C = { a+ib  : a ∈ R, b ∈ R }                          Complex numbers 

• So N ⊆ Z ⊆ Q ⊆ R ⊆ C



• A "Function" is an abstract concept that we can use to 
represent any rule, machine, however complex, that 
takes an input, and gives an output. 

• A function f: A →B "maps" elements of the set A to 
elements of the set B. 

• As you vary the input, the output varies. 
Given variables a ∈ A, b ∈ B it acts like this:

a                b

Functions

f



Functions
• A function "maps" members of its domain to its codomain 

• Let A be a set of 3 Apples, and B be a set of 4 Bananas 

• f : A →B 

• The set of all outputs of f is called is range 

• Each input to f can have at most one output. 
For graphs of f: R →R we call this the vertical line test:

{ } codomain

{ }  domain

range



Properties of Functions
• When a function f is called onto it means: 

• its range = its codomain. Or in other words: 

• every output has at least one input that produces it

{ } codomain

{ }  domain

range

The above function is not onto because one of the 
bananas is not in the range of f.



Properties of Functions
• When a function f is called one-to-one it means: 

• every output has at most one input that produces it

{ } codomain

{ }  domain

range

The above function is one-to-one: every banana in the 
range of f has exactly one input that produces it.



Invertible Functions
• When a function f is both one-to-one and onto, then 

every output has exactly one input that produces it. 

• Then we can define an inverse function f –1 which maps  
all the outputs back to their inputs, like so: 

• f  : A →B 

• f –1 : B →A { } codomain

{ }  domain



Invertible Functions

{ } codomain

{ }  domain
a           b           af f –1

For every a ∈ A, notice that a = f –1( f (a) )  
That means f –1∘ f = I, the identity function I(a) = a 
Similar to how x –1• x = (1/x) • x = 1 for real numbers. 

Sometimes people use the following names instead: 
               onto                            surjective 

one-to-one                             injective 
   invertible                             bijective



The Size of a Set
For many sets, we can tell how many elements they 
contain by simply counting them. 

If a set A contains m elements, we say |A| = m 

If a set B contains n > m elements, we know |B| > |A| 

A finite set contains n elements, where n ∈ N 

But mathematicians often deal with infinite sets. 
We can generalize the concept of size to those.



Cardinality
There are two ways to compare the sizes of sets. First way: 

If at least one function 
f maps A onto B, then 
we say |A| ≥ |B|, i.e.  
A's size, or cardinality 
is at least that of B. 

There is no function 
that maps A onto B 
here since each input 
has at most 1 output:

range

} domain A
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Cardinality
The first way used onto functions. Here is the second way: 

If there is a one-to-one  
function f : A →B, then 
we say |A| ≤ |B|, i.e.  
A's size, or cardinality 
is at most that of B. 

There is no one-to-one  
f : A →B since there are 
more inputs than 
outputs in this case:

}

}

{

{
range
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} codomain B{
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Subsets and Cardinality
If A ⊆ B then |A| ≤ |B|, since we can easily find a one-to-one  
function f : A →B, namely the identity function I(a) = a . 

 
 
 
 
So if we know A ⊆ B, and we want to show that |A| = |B| 
we just need to show that |A| ≥ |B|. 

which we can do by finding a function f that maps A onto B.

{ }  codomain B

{ }  domain A



If we can find an invertible function f : A →B, 
we know it's both one-to-one and onto, 
so |A| ≤ |B| and also |A| ≥ |B| and thus |A| = |B| 
 
In the case of finite sets, this is the same as counting: 

The act of counting these 
bananas involves making  
an invertible function 
from the set A = {1, 2, 3}  
to the set B of these bananas.

Counting

{ }  codomain B

{ }  domain A1,   2,   3



Infinite Sets
Some sets have an interesting property of being infinite. 

They cannot be counted using any natural number. 
 
 
 

No matter what domain A you choose, 
If the size of |A| is some n ∈ N, then it's too small:  
there is no way to map A onto all of B.

{ , ...}  codomain B is infinite

{ }  = domain A where |A| = 31,   2,   3



Hilbert's Grand Hotel
Imagine a hotel with an infinite number of rooms. 
Each room is already occupied by a guest. 
 
 

A new guest arrives. Can they get a room? 
Turns out ... yes! You can just move every guest 
from one room to the next and not run out of rooms. 
Then, put the new guest in the first room. 
Infinite sets can behave in counter-intuitive ways.

{   , ... }

{ , ... }



An infinite sequence of numbers is actually just a 
function  f : N →B which maps the natural numbers  
{0, 1, 2, 3, ... } to some set B. 
 
Here is a sequence of rational numbers: f(n) = 1/2n 
Its first few elements are 1, 1/2, 1/4, 1/8, 1/16, ... 
As n (input) gets bigger, the output gets closer to 0. 
 

Sequences

inputs

outputs
 f : N →Q



Mapping the natural numbers onto a set is like 
counting the elements in the set. 

If we can count the elements in an infinite set B, 
we call it countably infinite. 

We just have to find a sequence f : N →B that is onto, 
meaning every member of B is found in the sequence. 

Imagine a countably 
infinite set of bananas: 

Countably Infinite

{ , ...}  codomain B

{ }  domain N1,   2,   3, ...



It turns out the set Z (integers) is countably infinite! 

If you just tried to count all the positive integers first, 
you'd never get around to counting the negative ones. 

But you can alternate positive/negative, like so: 

 
In this way, the sequence maps N onto all of Z. 
So |N| ≥ |Z|. Since N ⊆ Z, it turns out that |N| = |Z| !!

Counting the Integers

{ }  codomain Z

{ }  domain N0, 1, 2, 3, 4, ...

0, 1, –1, 2, –2, ...



The set Q (rational numbers) is countably infinite, too. 

This infinite grid contains all of the rational numbers,  
even though some of them 
are listed more than once 
(e.g. 1/2 = 2/4). 

We construct a sequence that 
counts all rational numbers 
at least once, this time showing 
that |N| = |Q| !!

Counting the Rationals

   –3    –2    –1    0    1    2    3 
    1       1      1     1    1    1    1 
 
   –3    –2    –1    0    1    2    3  
    2       2      2     2    2    2    2  

  –3    –2    –1     0    1    2    3  
    3       3      3     3    3    3    3



If sets A and B are countably infinite, then their union is 
also countably infinite. Simply count like this: 

a1, b1, a2, b2, a3, b3, ... 

This is true for the union of any number of countably 
infinite sets. In fact, a countable union of countable 
sets is still countable. You can arrange them like you 
did with Q, and count them that way. 

So, are all infinities countable?

Union Countable Sets



We use a symbol to denote the cardinality of countably 
infinite sets: |N| = |Z| = |Q| = ℵ0 

And it turns out that |R| > ℵ0  

We can't even list all the points in the interval 0≤x≤1 . 

Given any such sequence of 
real numbers, we can easily  
construct a number 0≤x≤1 
which is not in the sequence, 
by making it different by one 
digit from each number there:

Reals are Uncountable!

0 ! 0.012317...  
1 ! 0.527382...  
2 ! 0.832743...  
3 ! 0.419351...  
...
x = 0.1334...



We use a symbol to denote the cardinality of |R| = 𝖈 
That fancy c stands for "continuum". 
 
So what is the cardinality of C, the set of all complex  
numbers? It turns out that |C| = |R| ! 

There are functions that can  
map a one-dimensional line 
onto a two dimensional plane 
in an invertible way. They  
are called space-filling curves.

Complex Numbers?



What if we removed 999 elements from an infinite set? 

It would be still be infinite. Otherwise, if the resulting set 
had n elements, the infinite set would have n + 999 
elements, which is a contradiction. 

What if we took all the real numbers R and removed all 
the the rational numbers Q, leaving only irrationals?  
 
The set of irrational numbers is uncountable! Otherwise, 
if it had been countable, then R = rational + irrational 
together would be countable, which is a contradiction.

Removing Elements



Given a set A, the collection of all its subsets is called  
the power set of A                                2A = { B : B ⊆ A } 

For example the power set of {1, 2, 5} has 8 elements: 
{     {},    {1},   {2},   {5},    {1,2},    {1,5},    {2,5},     {1,2,5}     } 

The power set of A has a far bigger size than A itself. 
When A is a finite set, i.e. |A| = n ,  then | 2A | = 2n 

Each subset of A consists of some members of A.  
Each a ∈ A is either in a given subset of A or not: 2 possibilities per a. 
Thus, if A has n elements, that's a total of 2n different subsets.

Power Set
advance

d



What about an infinite set A? We can show that, in fact, 
its power set always has bigger cardinality than A! 

|A| < |2A|

Infinite Power Sets
advance

d

Suppose you could actually find f mapping A onto 2A. 

So, f maps every member of a to a subset of A. 

Well, then consider the set B = { a ∈ A: a ∉ f(a) } . 

This is the set of all members of A which are not members of 

the corresponding subset f(a) ⊆ A .  

Since every member of 2A is some f(a), so B = f(b) for some b. 

Now, if b ∈ B then b ∉ f(b) = B, which is a contradiction. 

But if b ∉ B then b ∈ f(b) = B, which is also a contradiction. 

This means no such function f could actually exist.



That this means is that there is no biggest infinite set. 
Given any set A, its power set would have an even bigger 
cardinality. 

ℵ0 < ℵ1 < ℵ2 < . . .

No Biggest Infinity
advance

d



Concept: Infinity
In this topic, we explored the concept of infinity through considering functions on infinite sets. 
We took concepts such as the size of a set, which are easy and familiar when applied to finite 
sets, and worked out what it would mean for infinite sets. The resulting generalized concept is 
called cardinality. 

We also explored useful properties of functions that enable us to map one set onto another. 
Interestingly, it turned out that some infinite sets are the same size as their proper subsets. The 
sets Z and Q are the same size as the set of all natural numbers, even though they contain this 
set. You can count them all and never run out of natural numbers. There is a whole class of 
countably infinite sets, and their cardinality is denoted ℵ0. 

However, we then showed that R and C cannot be counted, because their cardinality is bigger. 
It is denoted 𝖈 for "continuum". But this is not the biggest cardinality, either. Given any set, we 
can construct its power set which always has an even larger cardinality. Thus, there is no 
biggest infinity in mathematics!


